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Abstract

A mixed continuous and discontinuous Galerkin finite element discretization is constructed for a generalized vortic-
ity streamfunction formulation in two spatial dimensions. This formulation consists of a hyperbolic (potential) vorticity
equation and a linear elliptic equation for a (transport) streamfunction. The generalized formulation includes three sys-
tems in geophysical fluid dynamics: the incompressible Euler equations, the barotropic quasi-geostrophic equations and
the rigid-lid equations. Multiple connected domains are considered with impenetrable and curved boundaries such that
the circulation at each connected piece of boundary must be introduced. The generalized system is shown to globally
conserve energy and weighted smooth functions of the vorticity. In particular, the weighted square vorticity or enstro-
phy is conserved. By construction, the spatial finite-clement discretization is shown to conserve energy and is L>-stable
in the enstrophy norm. The method is verified by numerical experiments which support our error estimates. Particular
attention is paid to match the continuous and discontinuous discretization. Hence, the implementation with a third-
order Runge—Kutta time discretization conserves energy and is L>-stable in the enstrophy norm for increasing time res-
olution in multiple connected curved domains.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Generalized vorticity streamfunction formulation; Multiple connected and curved domains; Discontinuous Galerkin finite
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1. Introduction

A mixed continuous—discontinuous Galerkin finite element model is constructed to solve several (geo-
physical) fluid equations in a generalized (potential) vorticity streamfunction formulation. Our algorithm
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is an inviscid extension of the mixed continuous—discontinuous Galerkin finite element method presented in
[9] for the incompressible two-dimensional Euler equations in a vorticity streamfunction formulation. We
extend this method to the generalized formulation in a multiple connected domain with curved boundaries,
and implement and test the algorithm more thoroughly. In particular, the circulation boundary condition
around each connected part of the boundary or each “island” requires a modification, (17), of the usual
function space for the continuous test and trial functions of the streamfunction.

The generalization consists of a hyperbolic equation for the (potential) vorticity, & = &(x,y,1), and a
linear elliptic equation for the streamfunction, i = y(x, y,), in a bounded domain Q C R? as function of
the horizontal coordinates x, y and time 7. It is defined as follows:

Q,/A+ V- (¢U) =0, (1a)
U =Vty, (1b)
V. (AVY) — By +D=¢/A (1c)

with 0<A4y<A4=A(x,y) <A; <oo and A, strictly positive finite constants, B= B(x,y) > 0 and
D = D(x,y). The gradient operator is given by V = [0,, ay]T and the two-dimensional curl operator by
Vi= [—6),,6X]T. The system (1) is completed with boundary conditions and initial conditions in Section 3.

The generalized system (1) serves as a model for several fluid flow problems by choosing 4, B and D to
yield the incompressible two-dimensional (2D) Euler equations [7], the quasi-geostrophic equations [13],
and the rigid-lid equations [8], often used in atmosphere and ocean dynamics. In all these cases ¢ represents
the (potential) vorticity of the fluid, # = AU represents the velocity and U the (mass transport) velocity of
the fluid. We explicitly consider the multiple connected and curved domains required in geophysical appli-
cations. This contrasts with [9], where the domain was simply connected and all numerical tests were done
in rectangular domains. In these curved domains, it is essential to use isoparametric boundary elements,
otherwise higher-order accuracy is impossible.

The outline of the paper is as follows. Details on the applications are provided in Section 2. In Section 4,
we show that the energy and enstrophy of the generalized system (1) are conserved quantities, as well as
Casimir invariants, for the slip flow boundary conditions introduced in Section 3. For the discretization
of (1), we use the same method as in [9]. The equation for the vorticity, (1a), is discretized using a discon-
tinuous Galerkin (DG) method, while for the elliptic equation, (1¢), we use a continuous Galerkin discret-
ization (see Section 5). In Section 6, we show that the spatial discretization of the generalized system leads
to a scheme in which the energy and enstrophy are conserved and stable quantities. Moreover, discretizing
time with an implicit 6- or modified midpoint-scheme, we also show energy and enstrophy to be conserved
in time for 0 = 1/2. Numerical conservation of energy and enstrophy is essential for long-time stable
integrations of geophysical systems (see, e.g. [10]). Further preservation of higher-order vortical integral
constraints, in the form of numerical Casimir invariants, is also desirable, but not achieved here. Error
estimates of the discretization are provided in Section 7. We verify the method and its implementation
in Section 8, focusing on the convergence to several exact solutions as well as the properties of energy
conservation and enstrophy stability. Finally, we summarize and conclude in Section 9.

2. Applications

The generalized vorticity streamfunction formulation given by (1) includes at least three distinct systems
of interest.

(i) The 2D Euler equations [7] describe the flow of an incompressible fluid:
&+ V- (i) =0, (2a)
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i = Vi, (2b)
Vi =¢ (2c)

with ¢ = 0,0 — d,u the vertical component of the Vortlc1ty of the fluid, i = (u, v) the velocity field and
Y the streamfunction. Defining 4 =1, B= D =0, and U = i, the Euler system (2) emerges as a spe-
cial case of (1).

(i1) The quasi-geostrophic equations [13] approximately describe the motion of the atmosphere or oceans
at mid-latitudes:

0 &+ V- (iié) =0, (3a)
i=Vy, (3b)
E= VY- f° w+f°hB + By (3¢)

with the quam-geostrophm potential vorticity &, Dy a characteristic depth of the atmosphere or ocean,
g the acceleration of gravity, the bottom topography at the vertical position z = hg = hp(x,y), the
Coriolis parameter fi = 2Q.sin @y and B = 2Q.cos @y/R, where R is the radius of the Earth, 6, a
characteristic value of the latitude and Q. the Earth’s rotation speed. Defining 4 =1,
B = f3/(gDy), D = fohg/Do + By, and U = i, the quasi-geostrophic system (3) follows from (1).

(iii) The rigid-lid equations [8] describe the vertically averaged motion of fluid between topography at
z=hg(x,y) and a rigid lid at z = hg + H:

0+ VE=0, (4a)
i = (1/H)V-y, (4b)
E=(Vi-a+f)/H (4c)

with ¢ the potential vorticity, # the velocity field, f the Coriolis parameter and 0 <1/
A1 <H=H(x,y)<1/4g<oo the depth of the fluid. Hence, by taking 4=1/H, B=0,
D=f=fy+ py and U = Hii, (4) emerges from (1).

3. Boundary and initial conditions

In [9] the domain was assumed to be simply connected which made it possible to consider one single
Dirichlet boundary condition: /|oo = 0 with 9Q the boundary of Q. In contrast, we focus on multiple con-
nected curved domains with impenetrable walls, where, in general, we omit additional inflow and outflow
boundary conditions for ease of presentation. This (part of the) boundary with slip flow boundary condi-
tions is also denoted by 0Q2p, on which

U-i=0 ()
holds with 7 = [n,, ny]T the outward unit vector normal to the boundary. The boundary 00, is partitioned
into N separate simply connected subsets. Thus, there exist 0Qp, C 0Qp such that

Ui\;la_QDi = G_QD and GQD‘. N aQD/ = @ (6)
for i,j=1,2,...,N and i # j, where 0Qp, U 0€p, is not a simply connected set for i # j (see Fig. 1).

On each part 0Qp, of the boundary, y is independent of x and y because 0y /0T =V 7=

(1b 5 s . . .
~Viy - a D 7. 720 with t = [—n,, n,]" the unit vector tangential to dQ. Hence, on these boundaries
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Fig. 1. An example of a domain, Q, with slip flow boundary conditions. The boundary is partitioned into three separate parts: 0Q2p, ,
0Qp, and 0Qp,. Each of these three parts is a simply connected set.

lMaszD,, = fi(t) (7)
is a function only depending on time. Consider the circulation 4; around 0Qp,, defined by
fg,:/ z‘i~%dl“:/ AT -#dr (8)
a0, o0,
with dI' a line element along 0Q2p. A relevant boundary condition at 0Qp,, see [13], is
d%;/dt =0, 9)

whence the functions fi(¢) in (7) are only implicitly defined.

Remark 1. Defining f,(¢) using (9) for each i =1,2,...,N defines y up to a constant. Therefore, for the case
B =0, we should prescribe f(¢) =0 on 0Qp, to enforce a unique solution ¥ for (1c).

The initial conditions are specified by the vorticity field and the circulations €; at t = 0. We calculate
(at t = 0) from (1c) using the boundary conditions. In Section 4, we show that the energy of the system (1) is
a conserved quantity for the boundary conditions (5) and (9), provided that there are no parts of the bound-
ary with inflow or outflow.

4. Conservation of energy and enstrophy

Energy and enstrophy are conserved quantities of the system (1) for the slip flow boundary conditions
introduced in Section 3. Define the total energy E(7) of the system (1) by

E(@) = LIVAVYIE + VB, (10)
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where we require A(x,y) > Ay >0 and B(x,y) > 0. Here, the L?*-norm is denoted as |- |* = (-,-), while (-’
denotes the usual L*-inner product with integration over the domain or sub domain, as indicated by a
subscript.

Lemma 2. The energy (10) of system (1) subject to slip flow boundary conditions, (5) and (9), is conserved
dE/dt = 0. (11)

Proof. Differentiating (1c) with respect to time and combining the result with (1a) gives V- (4V(8,y)) —
Boy = —V - (U¢). Multiplying this equation with , integrating over the domain, and integrating by parts
yields

_‘(jl—f:_/ Axﬂ@t(VQp-ﬁ)df—#/fo]-VWdQ—AQ&//f]ﬁdF. (12)

oQ

The last two terms on the right-hand side of (12) vanish by using U L Vi and (5). The first term on the
right-hand-side of (12) cancels as well since

ar® rD =~ d o (8),09)
/a AYO,(VY - i Z/ AYd, (Vi - ) dIM = ;f,(t)dt /aQDIAVl// adr-=""0,

where we used the relation Vi - 7 = V*y - . Hence, we find (11). O

The Casimirs invariants are
“0) = [ (1/a)¢,0d0 (13)
Q

with an arbitrary function C, = C,(¢) of the generalized vorticity. For the case C, (&) = £2/2, the enstrophy
S(t) emerges as a particularization

S(0) = 5 1¢/VAl, (14)

Lemma 3. The Casimirs (13) of system (1) , and thus the enstrophy (14), subject to the slip flow boundary
condition, (5), are conserved:

d%/dt=0 and dS/dt=0. (15)
Proof. Result (15) emerges after we multiply (la) by C/(¢) = dC,/d¢ and use V - (U&) = U - V¢ twice
(1/A)CL(&)B,&E + CL(ET - VE = (1/A)d,C(&) + V- (UC4(€)) = 0, (16)

integrate over the domain, Q, and use the boundary conditions. [

5. Finite element method

We use a finite element method to solve the generalized vorticity equations (1). By discretizing the
streamfunction with a continuous Galerkin finite element method in Section 5.1, we enforce continuity
of the normal velocity through element boundaries. This simplifies the choice of the numerical flux in
the DG discretization for (1a). In Section 5.3, we discuss time discretization schemes and, in Section 6,
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the properties of the numerical method concerning the conservation and stability of energy and enstrophy
of the numerical solution.'

5.1. Continuous Galerkin space discretization
Define the space of test functions W'(Q) as follows:
WHQ)={we H'(Q)|Vie{1,2,....N}Tc, e R : ||w — Ci”aszn[ =0} (17)
with the standard H'(Q) Sobolev space and with || - ||le_ the L?(0Qp,) norm. Note that x — y(x,7) € W(Q)

with ¢ fixed because of the boundary condition (7).

Remark 4. In the case B =0, a Dirichlet boundary condition |5, = 0 is used (see Remark 1), and instead
of (17) we use

WHQ)={we HI(Q)|HW||aQD] =0, Vie{2,...,N}Tc; eR:|lw— CiHaQD,. =0},
which ensures the weak formulation of (1c) to have a definite solution.

We multiply (Ic) by a test function w € W!(Q) and integrate over the domain. For the first term this
gives, after integrating by parts,

N
/V-(Avlp)wdQ:Z/ wAw.ﬁdr—/Avlp.deQ.
Q i—1 Joqp, Q

Using (9) and the fact that we W'(Q) is constant on each 0Qp, the boundary integral over
0Qp, (i=1,2,...,N) yields

_ 17 - 8
/ wAVY - adll = / wAU - %dF(:)w\aQn/ AU - %dF(:) Wlag, Gi-
aQDi aQDi ' aQDr ‘

The weak formulation then becomes: Find y € W'(Q) such that for all w € W'(Q) the following holds:

L(y,w) = Fe(w) (18)
with the operators L and F; defined by:
L(v,w) = (\/ZVU, \/ZVW) + (@v, \/l_?w) ) (19)
Q Q
N
Fiw) = ~(&lAmy + [ Dwd2+ > wlen, 6 (20)
Q i=1

for v,w € W'(Q). Note that L is a symmetric, coercive bilinear operator. Hence, L(w,w) > allw||; (o) With
x>0 Vw e W(Q), where coercivity is ensured in the case B =0 by Remark 4. The proof of coercivity can
be obtained by a minor change of the proof in Section 5.3 in [4]. Hence, the matrix of the system of linear
equations in the finite element discretization is positive definite.

To approximate  and w in the discretized form of (18), we define the function space

WE=W'(Q)nx} (21)

! Additional technical appendices on the implementation are found in [3].



E. Bernsen et al. | Journal of Computational Physics 211 (2006) 719-747 725

with X} a finite element space consisting of continuous functions and including at least all polynomials
of degree k on each element of a triangulation 7, = {K}. We replace i, w € W'(Q) in (18) with the numer-
ical approximations y,, w; € W’,j and approximate the vorticity with &, € Vﬁ to be defined in Section 5.2.
Hence, we obtain the discretized weak formulation: Find ¥, € W’,j such that for each w, € Wﬁ the following
holds:

LYy, wi) = Fe, (). (22)

5.2. Discontinuous Galerkin space discretization
For the DG discretization, we define the space of discontinuous test functions
V, = {uVK € 7, Tw, €X} 1 valg = walg } (23)

with 7, = {K} a triangulation of the domain and X} the same continuous finite element space as in (21).
We define V’; by (23), instead of

~k
Vh:{Uh‘VKEg'hZU”Keyk(K)} (24)

with 2,(K) the usual space of polynomials on K of degree equal to or less than &, because conservation of
energy of the numerical solution requires W; C V; (see Section 6). The DG discretization is obtained by
multiplying (1a) with a test function v € V’; and integrating over K € .7, to obtain

(0:&/4,v) — (’ff]a Vo) + (EUL, 0) =0 (25)

with 0K the boundary of an element K € .7, and U, = U - i the normal component of the velocity U. Sub-
sequently, we substitute the approximations vy, &, € V’,j into (25) with the approximate velocity field
Uy =V,

Define the inside, v~ = limv(x + €7), and outside, v+ = lim,ov(x + €it), trace values of a function v at a
boundary point x = (x,y)" on 0K. For the test function v, on 9K in (25), we choose the inside value v, , while
£,U, on 0K is replaced by a numerical flux f (g’;, ¢, , Uy,). Note that the normal transport velocity U, is con-
tinuous across element boundaries because y;, is continuous and U, = U= Vi, = -V, -t =
—dy,/dz. Hence, dy,/d% and U, are single valued on element boundaries. Only the vorticity &, is multi
valued.

The numerical flux satisfies the following properties:

(1) it is consistent

f(éha éha Un) = éhUn; (26)
(i1) it is conservative
f(é;ai;vUn) = 7]}(5}7352771]”7 (27)

ensuring that the flux from two neighboring elements K; € 7, to Kr € 7, is opposite to the flux
from Ky to K;; and
(iii) it is L*-stable in the enstrophy norm (see Section 6), that is,

(& — &) ULE—E&) <0 (28)

with &, = (& + ¢&,)/2 and %h = j’(f;, ¢, ,U,)/U,. Hence, for U, > 0 the value of the numerical flux is
closer to the flux, U,¢™, evaluated on the inside of the element than outside, U,&".
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The following fluxes / satisfy properties Eqs. (26)—(28):

central F(&,&,U,) =0, (290)
) . i EifU, <0
+ _ b
upwind F(¢%,&,U,) = Un{ C oot (29)
Lax-Friedrichs f(¢7,¢7,U,) = %(Un<i+ + &) —op(ET—¢)) (29¢)

with o = 0. A common choice is o = max|U,| with a local or global maximum. For oy =0 and
orr = |U,|, we obtain the central and upwind flux.

After replacing v, with v, and ¢,U, with f’ (&7, &,,U,) in (25), the weak formulation of (1a) is: find
&, € V5 such that for all v, € V} the following equation holds:

P08 t) = R (&4, 3, 01) (30)
with the operators px and Ry defined by:
P, v5) = (un /A4, 04) ., (31)
Ry, Wiy vn) = (uyVwy, Vo) — [K v, f () uy, Viwy, - i) dl (32)

for uy, v, € V],j and w;, € W’;. Note that we can formally write the space discretization as
0l = Zn(&n) (33)
for an operator ¥, following from (22) and (30).

5.3. Time discretization

5.3.1. Explicit scheme

For the test cases presented in Section 8, we use the explicit, third-order Runge—Kutta scheme (RK3) of
[14] (see also [9]). The maximum size of the time step depends on the maximum velocity and the size of the
elements. We performed a linear stability analysis for a space DG finite element and RK3 time discretiza-
tion of the vorticity equation with constant velocity on a regular one-dimensional mesh, see Table 1.

5.3.2. Implicit scheme

Implicit methods usually have the advantage that the restriction on the time step is less severe, but at the
expense of more computational cost per time step. We consider, inspired by the work in [17], the following
0- or modified midpoint-scheme [5] for the time discretization of (33):

Table 1
CFL-condition for different orders of basis functions for the discretized, linearized one-dimensional vorticity equation with constant
velocity u

Basis functions CFL (central flux) CFL (upwind flux)
Constant V3 1.25

Linear V3/4 0.409

Quadratic 0.214 0.209

Cubic 0.130 0.130

The indicative time step for the RK3 time discretization in the nonlinear problem is then chosen such that Ar < CFL dx /iy, With

dy the diameter of the inscribing circle of K and |||, = Maxzck||4U4|| the maximum velocity in K.
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AG /A= 24(&) (34)
with &0 = 0&! 4 (1 — 0)& and A& = &+ — &, for 0 € [0,1]. Using (22) and (30), we find:

L wy) = F»Ho(w;,) (35)

Pi(AG, i) = AR (&, 03, vy), (36)
for all v, € V; and w, € W;. For each integer n > 0 and w;, € W}, the streamfunction v/, is defined by

LWy, wa) = Fey(wn). (37)
Note that (35) then is satisfied because

=00+ (1= 0y, (38)

and L and F are (bi-)linear operators.

6. Numerical conservation of energy and enstrophy

In Section 4, we showed that energy and enstrophy are conserved quantities for the slip flow boundary
conditions described in Section 3. The energy and enstrophy of the discretization of (1) have similar
properties.

Define the energy, E,, of the numerical solution of (1)

1 1 1
En() =5 IVAVYllg + 5 1VB 1o =5 L0k ). (39)
Theorems 6 and 7 are the counterparts of Lemma 2 for the numerical system. We use the following lemma.

Lemma 5. Assume that we have slip flow boundary conditions, (5), then (32) satisfies
Z Ry (vp, wi, wp) =0 (40)
KeT
for each v, € V’,; and wy, € Wz
Proof. Using definition (32) of Rg, we have
Z Ry (vp, wy, wy,) = /th wy - Vw, dK Z / w, f (v, v, Viw, - i) drl,
KeT, KeT, Ke7, JOK

where the interior integral vanishes because V-wj, L Vw,,. The summation over the element boundary inte-
grals vanishes because w, is continuous across element boundaries (w; = wj ), the conservation property of
the numerical flux (27), and the slip flow boundary conditions. [

Theorem 6. Consider the solution of (22) and (30) subject to slip flow boundary conditions, (5). The energy
associated with this numerical solution, as given by (39), is a conserved quantity
dE,/dt = 0. (41)

Proof. We prove that (41) holds at each point in time. First choose an arbitrary, but fixed, point in time,
denoted by ¢,. Differentiate (22) with respect to time and use (30) to obtain for all w, € W’,; at =1ty

30
LObn iy = = 3 (@il ) 2 = 3 RellEd s Wil wi)-

KeT, KeT,
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Now choose w, = [if;],_,, and apply Lemma 5 to obtain

[(jfl‘h} _ ([a wh]’ 0’ [wh’f [0 = Z R ( iht fo° [l//h]t f0° [lﬁh][ to) =

KeT,

Since 7, was chosen arbitrary, we find (41). O

Note that an essential step consists of using w;, = 1, as a test function in the DG discretization (30). The
space of test functions for the continuous Galerkin discretization must, therefore, satisfy W C V;.

Denote the numerical energy at time level n by £, = L(\/}, y;)/2. The implicit time discretization scheme
has the property that for certain choices of 6 the numerical energy is conserved.

Theorem 7. Consider the solution of (36) and (35) subject to slip flow boundary conditions, (5) and (9). For
0 € 3, 1], the numerical energy is stable

AE} =E/™ —E} <0, (42)
For 0 = %, the numerical energy is conserved

AE! = 0. (43)
Proof. We combine (37) to obtain for each w, € Wj

L(AwZ>Wh) = Fvn+l (Wh) — Fé:n (Wh)
with Ay = ™ — . Since w;, € W C V¥, we use (20) (31), (36) and AZ" = &' — & to write

Fui(wi) = Fg(wi) = — > pe(Agw, =) MR (G wy).
KeTy, KeT ),

Combining the above two equations, choosing w;, = ¢Z+9 and applying Lemma 5 gives

(Aw}” n+€) Z AIRK n+H n+9 Z+(~)) =0.

KeTy

As the operator L is bilinear and symmetric, we use (38) to obtain (see [17])
n 1 n n
— s ;) (0 3 )L 0.

Thus, we find
1 n n
AE; = — (0 - E)L(Alﬁha AY}).

Since L(wy,wy) > 0 for each wj, € W, and y, € W}, we obtain AE} <0 for 6 € [L,1] and AE} =0 for
6=1 0O
2

Define the numerical enstrophy S,
1
$i(0) =518/ VA" (44)

Theorems 9 and 10 are the counterparts of Lemma 3 for the numerical system. We use the following lemma.

Lemma 8. Assume that we have slip flow boundary conditions (5). For each v, € VZ and wy, € W',j, the
operator Ry defined in (32) satisfies
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Z R[((U},,Wh, Uh) S 0. (45)

KeT,,

For the central flux (29a), one has

Z RK(D;,,W;,, Uh) =0. (46)

KeT

Proof. Using definition (32) of Rx we have

Z Ry (vn, Wi, vp) = Z /UhVLWh -Vv,dK — Z / v;f(v;,v;,U,,)dF (47)
K oK

KeT KeTy KeTy

with U, = V*w, - ii. After integration by parts and using the boundary conditions, (47) becomes

Z Ry (vy, wp, vp) = Z /m U, (% (U,j)2 — vhﬁh> dr

KeT KeT, Y¢
1 1—
= Z / —Un[Uh](th —E},)dr-ﬁ- Z / Un (—U% —EhlA]h) dr (48)
Ke7), YK 2 Ke7, YK 2

with 5, = (vj +v;)/2, 2 = ((y)* + (t;,)))/2, [va] = v} — v, and &, = f(v;,v;,U,)/U,. The second sum-
mation in (48) vanishes because of (27) and the boundary condition U - # = 0. The first term in (48) is smal-
ler than or equal to zero because of (28). Hence, (45) emerges. For the central flux (29a) by using the
equality in (28), the first term in (48) also vanishes. Hence, we obtain (46). [

The following theorem shows that the enstrophy of the numerical solution of (1) is conserved or stable.
Note that time is not yet discretized.

Theorem 9. Consider the solution of (22) and (30) subject to slip flow boundary conditions (5). The enstrophy
associated with this numerical solution, as given by (44), is a stable quantity

ds,/dt <0. (49)
For the central flux (29a), (49) becomes an equality.

Proof. We rewrite

dSh/dt = Z pK(aléh; éh) (50)

KeT,,

Using (30) with v, = &, and Lemma 8, we obtain

> @& &) = > Rel&n i &) <0. (51)

KeT ), KeT ),

Combining (50) and (51) yields (49). Using the central flux and Lemma 8§, the equality in (49) is
obtained. O

Denote the numerical enstrophy at time level n by S}. Using the 0-scheme, the numerical enstrophy is
stable for certain choices of 0.

Theorem 10. Consider the solution of (35) and (36) subject to slip flow boundary conditions (5). For 0 € [%, 1],
the numerical enstrophy is stable

AS} =S — 87 <0. (52)
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For the central flux (29a) with 0 =1 the enstrophy is conserved

AS! = 0. (53)
Proof. Take v, = & in (36) to obtain

ZPK Aém n+9 Z RK n+9 lpZJrH EnJrH). (54)

KeTy, KeT ),

Because the operator pg is bilinear and symmetric, we find after using (54):

A8y =" pe(Ag, &™) (9 ——) > pe(Ag, AL (55)

Ke/h KE/;,
S R, ) (9——) S pe(AEL AL, (56)
&, KeT,,

If we choose 0 € [%, 1], then we find (52) because of Lemma 8 and pg(v;,v;) = 0 for each v, € V';. If we
choose 0 = %, then the second term of (56) vanishes. If, additionally, the central flux (29a) is used, then

the first term vanishes as well because of Lemma 8. Hence, we obtain (53). [

7. Error estimates

In this section, we will state error estimates for the numerical discretization discussed in this paper. The
error analysis for the Euler equations presented in [9] has been extended to the numerical scheme given by
(22) and (30). The main differences with the analysis in [9] concern the elliptic part of the problem and the
fact that we make the dependence of the error on the (generalized) vorticity explicit. In addition, we impose
a slightly less restrictive condition on the vorticity field than in [9], where the condition & € H*T(Q), with
k> 1, is required. An error estimate which imposes minimal smoothness requirements on the (generalized)
vorticity field will be published elsewhere since this rather technical analysis is outside the scope of this
paper [16].

We now state the main error estimate:

Theorem 11. Assume that Q is a bounded domain with Lipschitz boundary 0Q. In addition, we assume that the
coefficients in (1c) satisfy A,B € C11(Q), D € L™(Q), with

Ay = essinf{A(x,y)|(x,y) € Q} >0, By =essinf{B(x,y)|(x,y) € Q} =0
and that the vorticity field & belongs to L*([0,T], W' (Q) N H*"'(Q)), with k > 1. Then the error in the DG
finite element discretization (22) and (30), with the numerical flux given by one of (29a)—(29c), subject to

the slip flow boundary condition (5), on a quasi-uniform mesh 7, with sufficiently small mesh size h < hy < 1,
can be estimated as

1 — il ) + 1 = &l cwkmq><crsup<HV5< nuwwpnéc,nnHHw@>>

t€[0,T]

. %
X(me;@+AMwmw@w)

with k the order of the polynomial basis functions in the DG discretization and C a positive constant, indepen-
dent of h, & and u.
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Corollary 12. The L*-norm of the error in the velocity field can be estimated as

([ — in| o) < Ch* SBI;] 1€C Ol e (o) + Ch™'||i — |2 (0)-
1€[0,

Remark 13. An upper bound for the minimum mesh size 4 is

h() = min \/A_O ) 1 )
CiCrCapr/4(2b + 1)

with b > 14y — By, Cg the regularity constant for the differential operator (1c) on the Lipschitz domain €,
C; the constant in the interpolation estimate for the projection from H*Q) onto Wﬁ and
Cap = maX(||A||L°°(Q)7 ||B||L‘x(§2))'

Remark 14. If By, > %AO +% then there is no restriction on the mesh size A, and 4 < 1 is a sufficient con-
dition for Theorem 11.

Here HY( Q) denotes the Hilbert space of k-times weakly differentiable functions which are square integra-
ble, including all derivatives up to the order k, L>(Q) is the space of essentially bounded functions, W' (Q)
the space of essentially bounded functions with also a bounded weak derivative, and C"'(Q) the space of
Hoélder continuous functions.

For a detailed proof and the definition of the function spaces and norms we refer to Appendix B.

8. Verification

In this section, we present some examples which test the numerical method. We implemented the finite
element method described using the C++ programming language. Each of the applications discussed in
Section 2 is tested with the Runge—Kutta time discretization discussed in Section 5.3.1 for the central flux
(29a) as well as the upwind flux (29b).

8.1. Example 1: Stuart vortex

First, we consider the Stuart vortex, which is a stationary solution for the 2D Euler equations (see Sec-
tion 2 and Appendix A.1). The coarsest mesh 77| used in the simulations is shown in Fig. 2. The upper and
lower boundary and the boundary of the island in the center of the domain coincide with streamlines of the
exact solution. The left and right boundaries are periodic. On the upper and lower boundaries we prescribe
a value of the streamfunction given by

Grow = Gup = / AU - #dI" ~ 6.180637249. (57)
0Qup

On the boundary of the island in the center of the domain we impose the exact value of the streamfunction
(see Remark 1).

We tested our implementation up to cubic basis functions, and used an unstructured quadrilateral basic
grid. To obtain the orders of convergence for the L'-, [*- and L*>-errors, given in Tables 2-5, this basic grid
was refined in a structured manner up to three times. For internal elements this grid refinement is straight-
forward, while for boundary elements the curvature of the boundary was taken into account. Note that
vorticity and streamfunction converge as O(/*"!) in the upwind case for the L'- and L>-errors, one order
higher than the error estimates. Here and in the remaining tests, the absolute value of the error is larger for
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Fig. 2. The coarsest mesh 7 with 720 elements.
Table 2
Errors in &, for the Stuart vortex at 1 = 8 using the upwind flux
k T Li-error Order Ly-error Order L .-error Order
1 720 1.94e — 01 - 8.22¢ — 02 - 1.22e — 01 -
2880 5.80e — 02 1.74 3.21e — 02 1.35 6.15¢ — 02 0.99
11,520 1.52¢ — 02 1.94 1.05¢ — 02 1.61 2.60e — 02 1.24
46,080 3.32¢ — 03 2.19 2.68¢ — 03 1.97 8.91le — 03 1.55
2 720 1.47¢ — 02 - 7.20e — 03 - 1.61e — 02 -
2880 1.57¢ — 03 3.23 9.86e — 04 2.87 2.95¢ — 03 2.44
11,520 1.5le — 04 3.38 1.24e — 04 2.99 5.00e — 04 2.56
46,080 1.26e — 05 3.58 1.33e — 05 3.22 7.54e — 05 2.73
3 720 1.48¢ — 02 - 7.53e — 03 - 1.69¢ — 02 -
2880 8.26e — 04 4.17 5.60e — 04 3.75 1.97¢ — 03 3.10
11,520 4.39¢ — 05 4.23 3.25¢ — 05 4.11 1.82e — 04 3.44
46,080 2.29¢ — 06 4.26 1.76e — 06 4.21 1.45¢ — 05 3.65

The L'-, L* and L>-errors and orders of convergence for kth-order basis functions with k =1, 2, 3 are shown.

the central flux and the convergence is slower than for the upwind flux, but is in accordance with our error
estimates. It means that the polynomial order k should be larger than one. The order of convergence for the
L™-error is also lower in all tests. Numerical results are shown in Fig. 3 for the vorticity and streamfunction
at time 7 = 8. The use of isoparametric elements at the curved boundaries is essential to reach convergence
for k = 2. When the curvature at the boundary is approximated with low-order (piecewise linear) elements
at the boundary, the inversion required to obtain ¥ from the elliptic equation transports the local lack of
accuracy instantly into the entire domain.

8.2. Example 2: A traveling wave solution

Consider a traveling wave solution for the quasi-geostrophic equations on a f-plane (see Section 2
and Appendix A.2). The domain is Q =[0,2r}* with periodic boundary conditions on the left and right
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Table 3
Errors in &, for the Stuart vortex at 1 = 8 using the central flux
k T Ly-error Order L,-error Order L_.-error Order
1 720 5.83e — 01 - 1.78¢ — 01 - 4.04e — 01 -
2880 3.44¢ — 01 0.76 1.06e — 01 0.75 2.18¢ — 01 0.89
11,520 2.18¢ — 01 0.66 6.67¢ — 02 0.66 2.03e — 01 0.10
46,080 1.24e — 01 0.81 3.82e — 02 0.80 1.02e — 01 0.99
2 720 1.54e — 01 - 4.93¢e — 02 - 9.45¢ — 02 -
2880 1.35¢ — 02 3.51 4.75¢ — 03 3.38 1.66e — 02 2.51
11,520 1.85¢ — 03 2.87 6.35¢ — 04 2.90 1.86e — 03 3.16
46,080 2.36e — 04 2.97 7.98¢ — 05 2.99 3.44e — 04 243
3 720 6.34e — 02 - 1.95¢ — 02 - 4.28¢ — 02 -
2880 8.03e — 03 2.98 2.56e — 03 2.93 6.99¢ — 03 2.61
11,520 9.21e — 04 3.12 3.11e — 04 3.04 1.30e — 03 243
46,080 1.13¢ — 04 3.02 3.89¢ — 05 3.00 1.91e — 04 2.76
The L'-, L* and L=-errors and orders of convergence for kth-order basis functions are shown.
Table 4
Errors in ;, for the Stuart vortex at ¢ = 8 using the upwind flux
k T L,-error Order L>-error Order L..-error Order
1 720 8.13e — 02 - 1.90e — 02 - 1.26e — 02 -
2880 1.78¢ — 02 2.19 4.20e — 03 2.18 3.50e — 03 1.85
11,520 4.22¢ — 03 2.08 1.00e — 03 2.06 9.58¢ — 04 1.87
46,080 1.02¢e — 03 2.05 2.44e — 04 2.04 2.69¢ — 04 1.83
2 720 4.99¢ — 03 - 1.15¢ — 03 - 8.6le — 04 -
2880 3.53¢ — 04 3.82 8.10e — 05 3.83 9.48¢ — 05 3.18
11,520 2.42¢ — 05 3.87 5.97e — 06 3.76 1.64e — 05 2.53
46,080 1.93e — 06 3.65 5.51e — 07 3.44 2.45¢ — 06 2.75
3 720 4.39¢ — 03 - 1.02¢ — 03 - 7.41e — 04 -
2880 3.12e — 04 3.81 6.96¢ — 05 3.88 5.34e — 05 3.79
11,520 1.92e — 05 4.02 4.25¢ — 06 4.03 3.86e — 06 3.79
46,080 1.26e — 06 3.94 2.77e — 07 3.94 2.96e — 07 371
The L'-, L* and L™®-errors and orders of convergence for kth-order basis functions are shown.
Table 5
Errors in ), for the Stuart vortex at # = 8 using the central flux
k T Ly-error Order Ly-error Order L_.-error Order
1 720 9.68¢ — 02 - 2.27e —02 - 1.26e — 02 -
2880 2.40e — 02 2.01 5.70e — 03 1.99 3.73e — 03 1.76
11,520 5.94e — 03 2.02 1.47¢ — 03 1.96 1.18¢ — 03 1.66
46,080 1.61e — 03 1.89 3.83e — 04 1.94 3.65¢ — 04 1.69
2 720 6.04e — 03 - 1.51e — 03 - 1.02e — 03 -
2880 3.58¢ — 04 4.08 8.32e — 05 4.18 9.39¢ — 05 3.44
11,520 2.40e — 05 3.90 5.98e — 06 3.80 1.64e — 05 2.51
46,080 1.93e — 06 3.63 5.52e — 07 3.44 2.45¢ — 06 2.74
3 720 4.35¢ — 03 - 1.04e — 03 - 7.90e — 04 -
2880 3.04e — 04 3.84 6.84¢ — 05 3.92 5.48¢e — 05 3.85
11,520 1.91e — 05 3.99 4.24e — 06 4.01 3.85e — 06 3.83
46,080 1.26e — 06 3.92 2.78¢ — 07 3.93 2.96e — 07 3.70

The L'-, L* and L™-errors and orders of convergence for kth-order basis functions are shown.
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Fig. 3. The (a) vorticity and (b) streamfunction field at r = 8 for the Stuart vortex.

boundary. On the upper and lower boundaries we prescribe the circulation of the exact solution as %oy, =
%\up = 0. The solutions are seen to converge to O(/* 1) for the vorticity and streamfunction in Tables 6 and
8 for the L'- and L*-errors using the upwind flux, and to O(/#*) in Tables 7 and 9 for the central flux. For
k=1, we seem to have a slow convergence in L for the central flux, which may hint at an inconsistency.
Numerical results are shown in Fig. 4.

Theorems 6 and 9 state that the energy and enstrophy of the numerical discretization in space are con-
served and stable for a spatial discretization only. To illustrate these theorems using a Runge-Kutta time
discretization, it is, therefore, necessary to refine the time step. Consider the numerical solution on a 32 x 32
grid using various time steps for quadratic basis functions. Figs. 5 and 6 show the relative change in energy
and enstrophy of the numerical solution for different time steps for the upwind flux as well as the central
flux. In Fig. 5, the energy of the numerical solution appears to converge to a constant value for a decreasing
time step. Fig. 6(a) illustrates similar convergence for the enstrophy when using a central flux. However, for
an upwind flux, the enstrophy is only a stable but not a conserved quantity, as follows from Fig. 6(b). These
results are consistent with Theorems 6 and 9. It is also verified from these results that RK3 is third-order in
time.

Table 6

Errors in &, for the traveling wave example at 1 = 127 using the upwind flux

k T Ly-error Order L,-error Order L -error Order

1 8x8 1.27e + 01 - 2.50e + 00 - 9.57e — 01 -
16 x 16 3.18e + 00 1.99 6.15¢ — 01 2.02 2.35¢ — 01 2.03
32x32 7.41e — 01 2.10 1.44e — 01 2.09 5.48¢ — 02 2.10
64 x 64 1.77e — 01 2.07 3.47¢ — 02 2.05 1.54e — 02 1.83

2 8x8 8.67e — 01 - 1.76e — 01 - 8.04e — 02 -
16 x 16 7.93¢ — 02 3.45 1.72¢ — 02 3.35 1.25¢ — 02 2.68
32x32 1.28¢ — 02 2.63 3.31le — 03 2.38 2.82e — 03 2.15
64 x 64 1.86e — 03 2.79 6.25¢ — 04 2.41 8.69¢ — 04 1.70

3 8x8 5.02e — 02 - 1.16e — 02 - 1.24e — 02 -
16 x 16 2.00e — 03 4.65 5.28¢ — 04 4.45 8.14¢ — 04 3.93
32x32 1.09¢ — 04 4.19 2.95¢ — 05 4.16 9.22e — 05 3.14
64 x 64 6.90e — 06 3.98 1. 81le — 06 4.02 9.49¢ — 06 3.28

The L'-, L>- and L*>-errors and orders of convergence for kth-order basis functions are shown.
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Table 7
Errors in &, for the traveling wave example at 1 = 12r using the central flux
k T Ly-error Order L,-error Order L.-error Order
1 8x8 3.07e + 01 - 5.95¢ + 00 - 2.93e + 00 -
16 x 16 1.16e + 01 1.41 2.39¢ + 00 1.32 1.51e + 00 0.96
32x32 6.65¢ + 00 0.80 1.43e + 00 0.74 1.55¢ + 00 —0.04
64 x 64 9.03¢ — 01 2.88 2.06e — 01 2.79 2.70e — 01 2.52
2 8x8 1.41e + 00 - 2.99¢ — 01 - 2.26e — 01 -
16 x 16 1.93e — 01 2.87 4.06e — 02 2.88 3.50e — 02 2.69
32x32 2.97¢ — 02 2.71 6.18¢ — 03 2.71 5.10e — 03 2.78
64 x 64 6.36e — 03 222 1.34e — 03 2.20 1.55¢ — 03 1.72
3 8x8 3.35e — 01 - 7.13e — 02 - 6.98¢ — 02 -
16 x 16 3.09¢ — 02 3.44 6.54e — 03 3.45 7.36e — 03 3.25
32x32 4.37e — 03 2.82 9.35¢ — 04 2.81 1.15¢ — 03 2.68
64 x 64 3.20e — 04 3.77 6.84e — 05 3.77 9.72¢ — 05 3.57

The L'-, L* and L=-errors and orders of convergence for kth-order basis functions are shown.

Table 8
Errors in y, for the traveling wave at 1 = 127 using the upwind flux
k T L-error Order L>-error Order L_-error Order
1 8x8 4.31e+00 - 8.31e — 01 - 2.67e — 01 -
16 x 16 1.06e + 00 2.03 2.04e — 01 2.03 6.47¢ — 02 2.05
32x32 2.45¢ — 01 2.11 4.75¢ — 02 2.10 1.53e — 02 2.08
64 x 64 5.80e — 02 2.08 1.13e — 02 2.07 3.66¢ — 03 2.06
2 8x8 1.00e — 01 - 1.98¢ — 02 - 9.10e — 03 -
16 x 16 9.23¢ — 03 3.44 1.77¢e — 03 3.49 7.11e — 04 3.68
32x32 1.09¢ — 03 3.08 1.96e — 04 3.18 6.99¢ — 05 3.35
64 x 64 1.36e — 04 3.00 2.43e — 05 3.01 8.18¢ — 06 3.10
3 8x8 1.04e — 02 - 2.28¢ — 03 - 1.26e — 03 -
16 x 16 4.53¢ — 04 4.52 1.14e — 04 433 7.59%¢ — 05 4.06
32x32 2.70e — 05 4.07 6.91e — 06 4.04 4.72¢ — 06 4.01
64 x 64 1.67e — 06 4.02 4.29¢ — 07 4.01 2.92e — 07 4.01

The L'-, L* and L*-errors and orders of convergence for kth-order basis functions are shown.

Table 9

Errors in , for the traveling wave at ¢ = 12n using the central flux

k T Li-error Order L»-error Order L..-error Order

1 8x8 8.72e + 00 - 1.63e + 00 - 5.05e — 01 -
16 %16 2.76e + 00 1.66 5.21e — 01 1.64 1.70e — 01 1.57
32x32 1.09¢ + 00 1.34 2.05¢ — 01 1.35 6.8%¢ — 02 1.30
64 x 64 5.32¢ — 02 4.36 1.0le — 02 4.34 3.25¢ — 03 441

2 8x8 1.27e — 01 - 2.59¢ — 02 - 1.16e — 02 -
16 x 16 8.80e — 03 3.85 1.65¢ — 03 3.97 7.05e — 04 4.04
32x32 1.10e — 03 3.00 2.03¢e — 04 3.03 8.05e — 05 3.13
64 x 64 1.37e — 04 3.00 2.50e — 05 3.02 8.22¢ — 06 3.29

3 8x8 1.15¢ — 02 - 2.44e — 03 - 1.44¢ — 03 -
16 %16 2.13¢ — 03 2.43 4.1% — 04 2.54 1.53¢e — 04 3.23
32x32 8.90e — 05 4.58 1.77e — 05 4.57 7.50e — 06 4.35
64 x 64 2.30e — 06 5.27 5.03¢ — 07 5.13 3.07e — 07 4.61

The L'-, L> and L™-errors and orders of convergence for kth-order basis functions are shown.
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Table 10

Errors in &, for the rigid lid example at 7 = 8 using the upwind flux

k T Ly-error Order L,-error Order L .-error Order

1 8x8 3.18e — 01 - 1.19¢ — 01 - 1.97e — 01 -
16 x 16 8.14e — 02 1.97 3.79¢ — 02 1.65 8.88e — 02 1.15
32x32 1.92¢ — 02 2.09 8.70e — 03 2.12 2.45¢ — 02 1.86
64 x 64 4.80e — 03 2.00 2.13¢ — 03 2.03 6.23e — 03 1.97

2 8x8 7.28¢ — 02 - 3.76e — 02 - 4.49¢ — 02 -
16 x 16 8.73e — 03 3.06 5.21e — 03 2.85 8.45¢ — 03 2.41
32x32 1.12¢ — 03 2.97 6.90e — 04 2.92 1.25¢ — 03 2.75
64 x 64 1.41e — 04 2.98 8.78e — 05 2.97 1.6le — 04 2.96

3 8x8 1.36e — 02 - 5.70e — 03 - 1.09¢ — 02 -
16 x 16 1.08¢ — 03 3.66 7.19¢ — 04 2.99 1.70e — 03 2.68
32x32 5.73e — 05 4.23 4.33¢ — 05 4.05 1.89¢ — 04 3.17
64 x 64 3.46e — 06 4.05 2.6le — 06 4.05 1.33¢ — 05 3.83

The L'-, L* and L=-errors and orders of convergence for kth-order basis functions are shown.

Table 11

Errors in &, for the rigid lid example at # = 8 using the central flux

k T L-error Order L>-error Order L_-error Order

1 8x8 7.07¢ — 01 - 1.95¢ — 01 - 2.36e — 01 -
16 x 16 2.35¢ — 01 1.59 6.93¢ — 02 1.49 7.46e — 02 1.66
32x32 3.85e — 02 2.61 1.24e — 02 2.48 2.75¢ — 02 1.44
64 x 64 7.34e — 03 2.39 2.57¢ — 03 2.27 7.03e — 03 1.97

2 8x8 3.05e — 01 - 8.15¢ — 02 - 7.71e — 02 -
16 x 16 3.40e — 02 3.17 1.0le — 02 3.01 1.28¢ — 02 2.59
32x32 4.28¢ — 03 2.99 1.23¢e — 03 3.04 1.55¢ — 03 3.04
64 x 64 5.41e — 04 2.98 1.58¢ — 04 2.96 2.46e — 04 2.66

3 8x8 3.71e — 02 - 1.04e — 02 - 1.30e — 02 -
16 x 16 4.26e — 03 3.12 1.27¢ — 03 3.03 2.02¢ — 03 2.68
32x32 2.38¢ — 04 4.16 7.05¢ — 05 4.17 1.88¢ — 04 3.42
64 x 64 1.34e — 05 4.15 4.09¢ — 06 4.11 1.33¢ — 05 3.83

The L'-, L*- and L*-errors and orders of convergence for kth-order basis functions are shown.

Table 12

Errors in y, for the rigid lid example at 7 = 8§ using the upwind flux

k T Ly-error Order Ly-error Order L .-error Order

1 8x8 4.48¢ — 01 - 2.19¢ — 01 - 2.55¢ — 01 -
16 x 16 1.18e — 01 1.92 7.31e — 02 1.58 1.30e — 01 0.97
32x32 2.98¢ — 02 1.99 1.84e — 02 1.99 4.0le — 02 1.70
64 x 64 7.45¢ — 03 2.00 4.60e — 03 2.00 1.06e — 02 1.92

2 8x8 8.51e — 02 - 5.13e — 02 - 7.47¢ — 02 -
16 x 16 9.18¢ — 03 3.21 5.68e — 03 3.18 1.08¢ — 02 2.79
32x32 1.12¢ — 03 3.03 6.99¢ — 04 3.02 1.34e — 03 3.02
64 x 64 1.42¢ — 04 2.99 8.80e — 05 2.99 1.68¢ — 04 3.00

3 8x8 1.36e — 02 - 5.92e — 03 - 1.06e — 02 -
16 x 16 1.07e — 03 3.67 7.49¢ — 04 2.98 1.90e — 03 2.49
32x32 5.71e — 05 4.23 4.36e — 05 4.10 1.98¢ — 04 3.26
64 x 64 3.46e — 06 4.05 2.62¢ — 06 4.06 1.37¢ — 05 3.85

The L'-, L* and L=-errors and orders of convergence for kth-order basis functions are shown.
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Table 13

Errors in , for the rigid lid example at ¢ = 8 using the central flux

k T Ly-error Order L,-error Order L.-error Order

1 8x8 4.47e — 01 — 2.19¢ — 01 - 2.55¢ — 01 -
16 x 16 1.19¢ — 01 1.92 7.36e — 02 1.57 1.33¢ — 01 0.94
32x32 2.98¢ — 02 1.99 1.84e — 02 2.00 4.04e — 02 1.72
64 x 64 7.45¢ — 03 2.00 4.60e — 03 2.00 1.06e — 02 1.93

2 8x8 8.64e — 02 - 5.23e — 02 - 7.51e — 02 -
16x 16 9.22¢ — 03 3.23 5.71le — 03 3.19 1.09¢ — 02 2.78
32x32 1.12e — 03 3.04 6.99¢ — 04 3.03 1.34e — 03 3.03
64 x 64 1.42¢ — 04 2.99 8.80e — 05 2.99 1.68¢ — 04 3.00

3 8x8 1.37¢ — 02 — 5.94e — 03 - 1.08¢ — 02 -
16 x 16 1.07e — 03 3.67 7.50e — 04 2.99 1.90e — 03 2.51
32x32 5.71e — 05 4.23 4.36e — 05 4.10 1.98¢ — 04 3.27
64 x 64 3.46e — 06 4.05 2.62¢ — 06 4.06 1.37e — 05 3.85

The L'-, L>- and L>®-errors and orders of convergence for kth-order basis functions are shown.

Vorticity

Streamfunction

04
06
© 08

S S e
“NWarNONDO

Fig. 7. (a) Vorticity and (b) streamfunction field at ¢ = 8 for the rigid lid example.
8.3. Example 3: Rigid lid equations
Consider a modified solution of the Stuart vortex for the rigid lid equations (see Section 2 and Appendix
A.3). The left and right boundary (x = 0 and x = 2n) are periodic. On the upper boundary we prescribe a
value for the streamfunction, while at the lower boundary we prescribe a value of the circulation given by

(57). The solutions are seen to converge to O(A*) and O(h* 1) for the vorticity and streamfunction in Tables
10-13. Numerical results for the streamfunction and vorticity are shown in Fig. 7.

9. Summary and conclusion
To summarize, the following results have been obtained:

e A generalized (potential) vorticity streamfunction formulation was defined, including not only the
incompressible 2D Euler equations as in [9], but also the quasi-geostrophic and rigid lid equations. This
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formulation was shown to conserve energy and any weighted smooth function of the (potential) vortic-
ity. In particular, enstrophy is conserved.

e Multiply connected and curved domains were considered, requiring the introduction of circulation
around each connected piece of boundary and the use of isoparametric elements at curved boundaries
for higher-order spatial discretizations. Otherwise, only a restricted set of initial conditions can be con-
sidered, and higher-order accuracy cannot be obtained as any local reduction of accuracy due to impro-
per boundary elements affects the global solution of the streamfunction.

e The generalized system was discretized using a DG finite element method for the vorticity equation, and
a continuous Galerkin finite element method for the elliptic equation to determine the streamfunction.
Particular attention was paid to efficiently implement the circulation boundary condition, which requires
use of the modified function space (17).

e The implementation of the numerical method matched the properties of conservation of numerical
energy and enstrophy. Hence, the function space used in the continuous Galerkin discretization was a
subset of the discontinuous one: Wﬁ C V’;, which was also implemented and tested numerically. It is
important to stress that for geophysical applications, preservation of at least energy and enstrophy is
required and generally accepted practice for long-time integrations.

e An implicit time discretization scheme was defined for which conservation of energy and stability of ens-
trophy for the system discretized in space and time was proven, but not tested numerically.

e Three exact solutions, one for each of the above geophysical applications, were used to verify the numer-
ical algorithm and implementation in curved and multiple connected domains. In these test cases, the
explicit third-order Runge—Kutta time discretization was used. Particular attention was paid to observe
the tendency towards energy conservation and L>-stability.

e In accordance with our error estimates, the scheme was shown to converge, often an order higher than
the O(/") predicted by the analysis for kth-order basis functions.

Further work will consist of extending the mixed continuous and DG finite element formulation to bal-
anced equations in geophysical fluid dynamics (see, e.g. [12]), and simulations of localized nonlinear vorti-
cal flows around separatrices in complex, curved domains. In addition, a discontinuous (space-time)

Galerkin finite-element discretization of both hyperbolic and elliptic equations with energy and enstrophy
conservation and stability is of interest.
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Appendix A. Exact solutions
Exact solutions of (1) are given for the examples used in Section 8.
A.1. Stuart vortex

The Stuart vortex [15,6] is an exact stationary solution of the Euler equations (2) with:
E(x,y,t) =1/(acoshy + Va® — 1cosx)2 and (A.la)
Y(x,y,t) =log (a coshy + va?—1 cosx) (A.1b)
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with a > 1. The domain used in Section 8.1 is
Q={(x,y) eR[0<x<2n, K <YP(x,,0) <Ky} (A2)

with K; = log(ac; +a+ va?> — 1) for ¢; >0 and —2va? — a/a < ¢, < 0. We took ¢; = —/5/2, ¢, =2 and
a = 3/2. The left and right boundaries of the domain are periodic. The remaining parts of the boundary
consist of three connected parts:

a‘Qup = {(xvy) € Q|y = 07 lp(X,y, 0) = K2}v (A3a)
a‘QdOW“ = {(X,y) € ‘Q‘y < Oa l//(xaya 0) = KZ}v (A3b)
0y, = {(x’y) € Q\lﬁ(x,y, O) = Kl}' (A3C)

A.2. Traveling wave example

A traveling wave solution for the quasi-geostrophic equations (3) is:

E(x,p, 1) = =3sin(x — cf) sin(y) — /2, (A.da)
W(x,p,t) = sin(x — ct) sin(p). (A.4D)

In Section 8.2, the wave speed ¢ =1/6, and A =B =1 and D = —y/2.
A.3. Rigid lid example

An exact stationary solution of the rigid lid equations (4) has been constructed based on the Stuart vor-
tex. In (1), we take B=0, D =0 and

A=1/H = acoshy+ vVa* — 1cosx. (A.5)
The stationary solution of the system is now given by
(e, p,0) = —yY(x,p,0) = 1/<acoshy+ Va2 — lcosx) (A.6a)

with ¢ > 0. In Section 8.3, a = 3/2. Note that the real velocity of the fluid (not the depth integrated veloc-
ity), given by i@ = (1/H)V*'y, is equal and opposite to the velocity of the Stuart vortex solution given in
Section 8.1.

Appendix B. Proof of Theorem 11

In this appendix, we give a proof of the error estimate for the continuous—discontinuous Galerkin dis-
cretization for generalized vorticity dynamics, stated in Theorem 11.

We denote with Q a bounded domain @ C R? with Lipschitz boundary 0Q. We define the Hilbert space
HX(Q) of k-times weakly differentiable functions which are square integrable, 1nchllding all derivatives up to
the order k. The norm in H"(Q) is defined as [|w|[x o (Zm<k||D“w||Lz ))? and the semi-norm as
Wiy = (= k||D°‘w|| 2@ )2 with L*(Q) = H%(Q). Here D w denotes the weak derivative of order |o| of
w with o the multi- 1ndex symbol see [4, Section 1.2]. For clarity we use in this section |wl|;2,, for the
L? norm instead of ||w||o used elsewhere in this paper. The space of essentially bounded functions is denoted
as L>(Q) and is equipped with the norm [|w|[ (o) = €ss sup, ,)co|w(x,)|. For any nonnegative integer m,
C"(Q) denotes the space of all functions w which, together with all their partial derivatives D*w of order
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|| < m, are continuous in Q. For 0 < 4 < 1, we define C"*(Q) to be the subspace of C"(Q), with Q the clo-
sure of Q, consisting of those functions w for which for 0 < o < m, D*w satisfies in Q a Holder condition of
exponent 4, that is there exists a constant C such that

ID*w(x) — D'w(y)| < Clx —y', Vx,y€Q.
Define the projection Py : H**1(Q)—V%, with for each K € 7,

(Pxv,w/A) = (v,w/A),, Yw €V}, (B.1)
for which the following interpolation estimates are available:

1€ = Pl ) < Crl1E] oo iy (B.2)

1€ = Prcéll2iery < CH2E oy (B.3)

with K the patch of elements which connect to an edge or a vertex of element K. For a proof of (B.2) and
(B.3), see Theorem 4.4 and Remark 8 in [2]. We also introduce the error in the vorticity and streamfunction,
e=¢— &, and 6 = — yy, respectively, and the projection of the vorticity error €, = Pxe = Pxé — &,

The first step in the proof of Theorem 11 is to find a relation between the errors 6 and e. Using Theorem
5.6.8 in [4], we directly obtain a coercivity estimate for the bilinear form L defined in (19)

1
L(w,w) > EAol\Wllf{l(g) — bWl Ywe H'(Q) (B4)

with 4o = ess inf{A(x,y)|(x,y) € Q} >0 and b > 14, — By, where By = ess inf{ B(x,y) | (x,y) € Q}.
If we subtract (22) from (18) then we obtain the following relation for the error in the streamfunction J:

L(5,w) = —(e/4d,w),, YweE W:. (B.5)
Taking w =6 in (B.5) and using the coercivity estimate for L, (B.4), we obtain
|
§A0||5H§1'(9> < L(6,90) + b||5‘|i2(g)
= —(c/4,8)g + D)3l 72
< Ne/All2)1002) + b6l

1 1
< 3llefalisg + (04 5) 910, (B5)

In (B.6), we used the error equation (B.5), in (B.7) the Schwarz inequality and finally the arithmetic-geo-
metric mean inequality in (B.8).

The next step is to provide an error bound for the L*(Q) norm of d. For this we consider the adjoint
equation

V- (4Vw)+Bw=¢ in Q (B.9)
with ¢ € L*(Q), and

i-Vw=0 at0Q. (B.10)
Then, for w € V, with V:= H'(Q) if B#0 and V:= {v € H'(Q)|JovdQ = 0} if B =0, we obtain

(0,0)g =—(0,V-(AVW))o + (6, Bw), = L(d,w). (B.11)

In (B.11) we use, respectively, (B.9), integrate by parts and apply the boundary condition (B.10). If we add
now (B.5), where we denote w € W’,‘, as wy, and (B.11) then we obtain
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(5a ¢)Q = L(évw - Wh) + (e/A,w - Wh)Q - (G/A7W)Q
< CAB||5HH'(Q) inf/ [[w— X”Hl(Q) + HE/A”LZ(Q) infk [w— X”Lz(gz) + ||6/AHL2(Q)||W||L2(Q)
2EWT LEW,

h

< CanCrhld]l 10 W2y + e/ All 200y (it + 1) [ W2 g (B.12)

with Cap = max([|4||;~q), [|B|;~ () and we used the Schwarz inequality in the second step, and finally the
interpolation estimate Theorem 4.4.20, p. 109 in [4] with constant Cj. An upper bound for ||w|| () can be
obtained using the fact that the differential operator in (B.9) is strongly elliptic, the related bilinear form L
in (19) is a symmetric and coercive bilinear form on H'(Q), see (B.4), and using the regularity estimate given
by Theorem 4.18(ii), pp. 137-138 in [11], where we assume that 4, B € C"™'(Q) with m > 0. This, together
with the boundary condition (B.10), implies that

Wllmaa,) < ClWlimn gy + Cllllmio,),  m =0, (B.13)

where Q, = G,N Q, Q, = G,NQ, with G, and G, open subsets of R? such that G, is a compact subset of G..
Here, G intersects the boundary of Q and G, has a smooth boundary not necessarily completely contained
in Q. An estimate for [|w[|,;1 o, satisfying (B.9) together with the boundary condition (B.10) can be obtained
directly from Theorem 4.10(i), pp. 128-129 in [11]. Introducing this result into (B.13) we obtain

|W||Hm+2(g) < Cr|l9

H™(Q)> m = O, Yw € V, (Bl4)

where we used that  can be covered by a finite number of sets Q.
If we insert (B.14), with m = 0, into (B.12) and set ¢ equal to J, then we obtain the estimate

181l,2(0) < CrCRCashlld]| 1) + (Cik® + 1)Crll€/ Al 2q). (B.15)

Next, we combine (B.8) and (B.15) and use the arithmetic—geometric mean inequality which results in
1 1
§A0||5||,2,1(Q) < (5 + (26 + 1)Cx (C1h* + 1)2> ||6/A\|§Z(Q) +(2b + 1)c§c2Rcf\Bh2H5||f,l(Q). (B.16)

Assume now that the mesh size 1 < hg, with (2b + 1)C;Cx Chy = 14, or equivalently

_ VA
C1CrCapr\/4(2b + 1)

which is the condition on /g stated in Remark 13, then we obtain the following relation between the errors &
and e:

ho

ol

2 /1
190 < 2 (5 @0+ DERCR +17) 16/l = el Al (B.17)
Note, if b +1 < 0 in (B.16), or equivalently By > 14, +1, then 14y — (2b + 1)C]CRCizh® > 0 and there is
no restriction on the minimum mesh size sy anymore, which proves Remark 14.

Consider now the error in the vorticity. Subtract (30) from (25) and use (1b), then the error equation for
the vorticity is equal to

(06/4,0) = (EVY — EVIY,, Vo), — (EVRY - — E VI, -0 )y, VK € T4, Yoe VE
(B.18)
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where the superscripts — and + in this section refer to the trace at the element boundary 0K taken from the
inside and outside of the element, respectively. Take v = ¢, and use that (0,e/A4,v)x = (0,64/A,v)g for each
ve Vk and K € 7, to obtain

1d .
5 (@4 @) _K; (EV-Y — &V, Ve _K; (Vi i =&V, i) (B.19)

Rewriting the first term on the right-hand-side of (B.19) results in

SV = EV Y, Va), = Y (EVS+ eV, V),

KeT,, KeT,

> {(EV6, Ven) + (eV Y, Ve) = (V5 V(E = Pid))  }

KeTy,

= Z {_(thLé’ Vé)K + (66;7 Vi ﬁ)aK +% ((67)2’ Vlwh ) ﬁ)

KeTy

— (eV'y,, V(- PKC))K}. (B.20)
Plugging this result into (B.19) gives
1
3 st(eh/A en)g = — (e, V0 VE) g = > (6, V', - V(€= Pyd)),

oK

KeTy,
+ 3 S (g e Vs ) +1((e*)2 Vi n) - (gvﬁp-fq—évﬁp A e*) .
& h= L) ’ b ) ek h B0k ) ok
(B.21)
Define e = £ — E and rewrite the boundary terms in (B.21) as follows:
1 _ . L3 .
3 {(ehf Vo i)ty (V0 8) = (v - Vi, .n,eh)aK}
KeT,, ) )
1 . . .
= (2 (e_)2 —e &V, n> + Z (& — (Pxé)), Vi, '”)aK (B.22)
KeT, 0K  KeT,
to obtain
1d .
5 dz — (& /4, Eh) (Ehavié'vf)gfzmﬂ (e,Vﬂp,,V(ngKé))K
(A) (B)
1 _ . .
+ZK€.“/‘;1 (E(E )2_6 e,VLwh. ) +ZK€/ PKé) )VLwh'n)aK' (B'23)
©) (D)

Now, we evaluate the terms (A), (B), (C) and (D) separately. For (A), we apply the Schwarz inequality, the
relation ||V*4| 2@ = IVol 2o and use (B.17), with e = ¢, + & — Pg<, followed by the arithmetic-geometric
mean inequality

(e, V10 - VE) g < IVE] (o ll€nll 200 VOl 200

< Cell Vel oy lenllziay (len /Al + 1E = Ped) /Al 20

3 1
< ClVelio (3 Nl + 31 Peélie ) (B.24)
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For (B), we use the regularity estimate Theorem 4.18(i), pp. 137-138 in [11]. Together with the boundary
condition = ¢(7) at dQp, (7), and the condition 4, B € C™'(Q), this implies that

Iy

1
2
o < IV iy + ClEll o, + enlt )</F dS> om0 (B.25)
2

with I'; = 02 N Q5. An estimate for [[y/||;1 o satisfying (19)-(20) together with the boundary condition (7)
can be obtained directly from Theorem 4. 10 (1), pp. 128-129 in [11]. Introducing this result into (B.25) to-
gether with the inequality showing that ¢p(¢) is bounded in terms of the vorticity (see [16]) we obtain

[Vl zm2(0) < CllElgm ey mz0, YWeV, (B.26)

where we used that  can be covered by a finite number of sets Q. Since HZ(Q) is embedded in L>°(Q) (The-
orem 4.12 [1], p. 85) and using the regularity estimate (B.26) this also implies

IVl gy < V0l o) + IV W) S V0l 0y + CllY s o)
< ||Vi5||pc(9) + Cli¢lla ) (B.27)
for 4,B € C"'(Q). We also have the relation
V20l ) = IV = ¥l ie gy < IV = Pat) || o) + IV (Potr = )| o)
< Chl30) + CHH V(P — )l 20
< &gy + O (IV0ll20) + IV = Pat) (o))
< Chléllypro) + Ch 0l m =0, h>0 (B.28)

with Pg a global Lagrangian interpolant. In the second inequality, we use a standard interpolation estimate
for Py (Theorem 4.4.20 in [4]) and an inverse inequality (Theorem 4.5.11 in [4]). Next, we use the regularity
estimate (B.26) and the triangle inequality, and, finally, for |[V(y — Poy)||;2 (o) the interpolation estimate
Theorem 4.4.20 in [4] and (B.26) again. Combining (B.27) and (B.28) and using (B.17), we obtain the
estimate

1
IVl < (Wil + 5 el ). 0<h <1
and apply the Schwarz inequality to obtain

D (@ V- VE=Ped)) o < D IVl llel o IV (E = Ped)l e

KeT,, KeT,
< Clllla Y IVE = Pedll (el + 1€ = Prcllo))
KE./;,
2
£ (el + 16— Pecllig ) IVE — Pl
KeT,,
2 2112
< Cllelna Y (leslie + 1€ = Pecliine)
KeT,,
_ 2 2
+C 3 Ko (leallay + 1€ = Prclige )
KeTy

< Cllellper 3 (leallz + 16 = Pecli ), k=1, 0<h<l,

KeT,
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where the geometric mean inequality and the interpolation estimate (B.2) are used in the third step. For (C),
we use the stability condition (28) and the relation ¢ =¢— (&, —¢&,) with &, = (1/2)(& +¢,) and
€= (1/2)(e" 4+ ¢) to obtain

S (3P ceven) =Y T )k 3 (G -8 V),

KeT,, KeTy

=0

:% Z ((57 - €+)(Eh - Eh%vilﬁh : ﬁ)ak
KeTy
_ (28)
=3 Z ( & = &) éh),Vlwh-h)ak < 0. (B.30)

For estimating (D), we use that for the upwind flux (29b) and central flux (29a) the following holds
€l 20x) < CUl€ [l 20x) + l€¥ [l 20k )- Also using the trace theorem ||Vlt//h||Lx(aK) < C||VL¢,,||L3@<K> and the
Schwarz inequality (D) then becomes

Y (BE— (P ) VHy 7)o SC D IV Wl 1= (Pr)

KeTy, KeTy,

1 _
<€ 3 (el + 3l )16 = P s

KeT,

L*(3K) ||€HLZ(6K)

X (1€ e+ 1€ iz

<Clelma Y- (16— Pe) i +H 7 (llenll 2 + 16— Prcllou ) )

KeT,,
X (HGITHLZ(BK) +1E- (PK§)+||L2<61<) e ll2m) 11— (PKf)_HLZ(aK))
(B.31)

with /2 < 1. In the last step we used the interpolation inequality (B.3). Assuming that the mesh is quasi uni-
form, we can combine Lemma 4.5.3 in [4] and Theorem 1.6.6 in [4] to obtain the following inverse
inequality:
_ C
o7l 20x) < Vi ol 2wy Vo€ Ve
Applying this estimate for v = ¢, to (B.31) and using the arithmetic—geometric mean inequality results, un-
der the condition 0 <A< land k > 1, in

- . 1 - -
> (&= (Pe&) ).V 7)o <CllEori) {Zné—(PKé) 200+ 1€ = (Pxd) |iz<,<>+||eh||iz<,<>}-

KeT, KET,

(B.32)

Combining the above estimates for (A), (B), (C) and (D), plugging them into (B.23), and using the inter-
polation estimates (B.2) and (B.3) results in

1d
2 qillilie < € sup (IVECDlmio 166 Dllioa) (el + 51000 o)

t€[0,7]
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with k > 1 the polynomial order of the basis functions and 0 < & < 1. Now we use the Gronwall inequality,
Wthh states that if y > 0 satisfies dy(t)/dt C(y(t) =+ h(1)) for 0 < ¢t < T with C a constant, A(¢) > 0 and
h e L'([0, T)) then y(7) < exp(CT){y(0) + fo s) ds}. Hence, we find for ¢ € [0, 7] that

)

2 2 2 ' 2

ooy < exp (€T sup (IVEC,Dlloys 0Dt a) ([||eh||m>}t_0+h" / ||¢<~,z>||Hk+l<g>dr>,

t€[0 -
k=1

If we apply for each element K € 7, the projection Pk given by (B.1) to the initial condition and use the
interpolation estimate (B.2) then

[leill @) < CHIEC O s

with k > 1, and thus for ¢ € [0, 7] we obtain

1

T 2
2 2
lleall2e) < CHexp | CT SB%(HVE(', (@) 1EC Dl ) (If(wo)llm(g) +/0 1EC; Dllr1(g) dt) ;
te0,
with £ > 1.
The error in the vorticity can now be estimated using the relation

lell o) < Nell 2oy + 1€ = Peéllag < Nlenll 2 + A sup 1EC Dl ) (B.33)
t€0,

where in the second step we use the interpolation estimate (B.2). An estimate for the total error is obtained
by combining (B.17) and (B.33) and using (1b), viz., & = AV, &, = AV, which implies [|i — iiy| 2 g, <
Clly = Wil (o) = ClIO|l 1 (qy» @and completes the proof. [

The proof of Corollary 12 follows directly from (B.28).
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